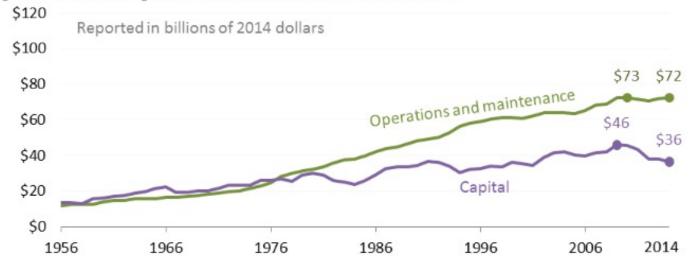
# **CAPITAL BUDGETING AND FUNDING** Road Map for the Future



## **PRESENTATION THEMES**



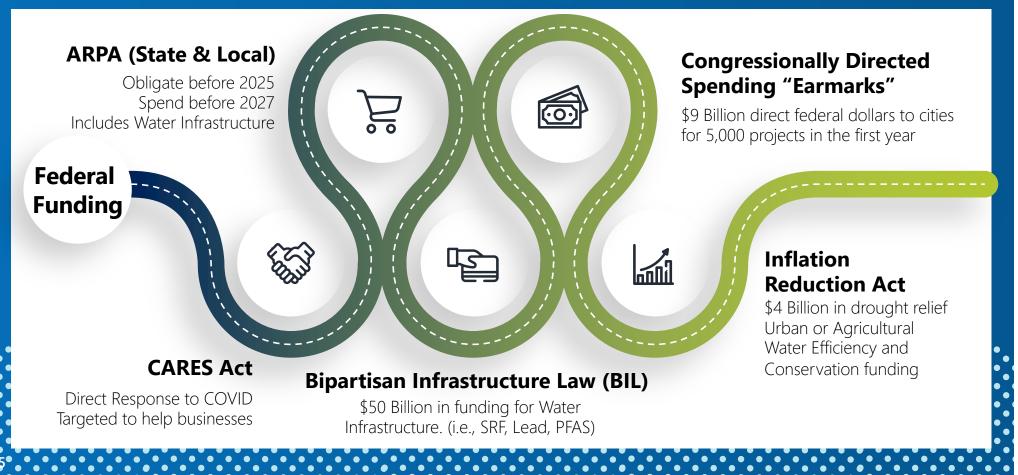
- Understanding Value
- Maintaining Value
- Financial Viability
- Best Utilizing Available Funds
- Near- and Long-Term Plan
- Communicating Value,
   Planning Vision, and Viability


## **TOP ISSUES FACING THE WATER INDUSTRY**

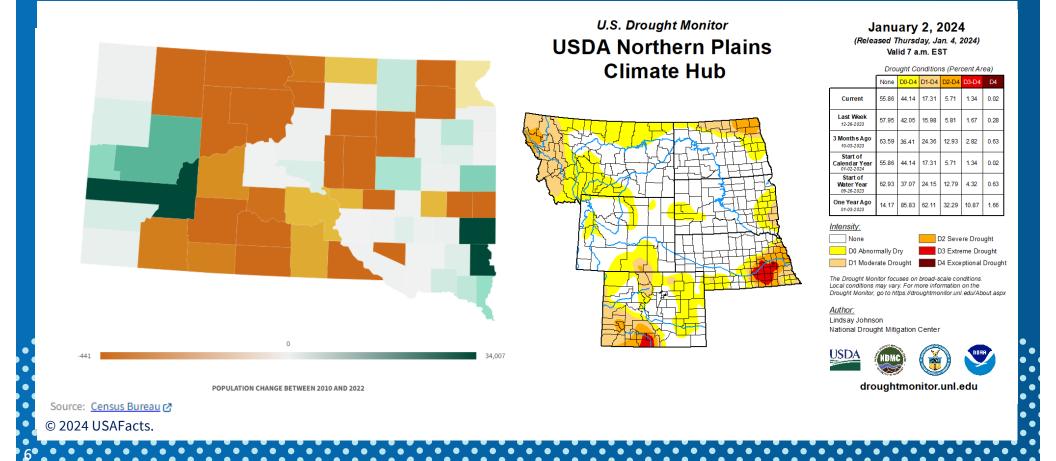
- **1.** Renewal and Replacement of Aging Infrastructure
- 2. Long-Term Water Supply Availability
- **3.** Financing for Capital Improvements
- 4. Public Understanding of the Value of Water Resources (#8 last year)
- 5. Watershed/Source Protection
- 6. Aging Workforce
- 7. Public Value of Services



## TRADITIONAL WATER & WASTEWATER SPENDING LEVELS


Between 1980 and 2014, real spending on O&M grew 126% while real spending on capital grew 22%, including a decline of 21% between 2009 and 2014




Graphed by the Environmental Finance Center at the University of North Carolina, Chapel Hill. Source: Congressional Budget Office supplemental data for the *Public Spending on Transportation and Water Infrastructure, 1956 to 2014* report (March 2015). Displays public spending on supply systems for distributing potable water as well as wastewater and sewage treatment systems and plants. Real spending is shown after adjusting nominal spending to their 2014 dollar equivalent using infrastructure-specific price indexes.

Four Trends in Government Spending on Water & Wastewater (unc.edu) (Sept 2015)

## HISTORIC LEVEL OF FEDERAL FUNDING (SINCE 2020)



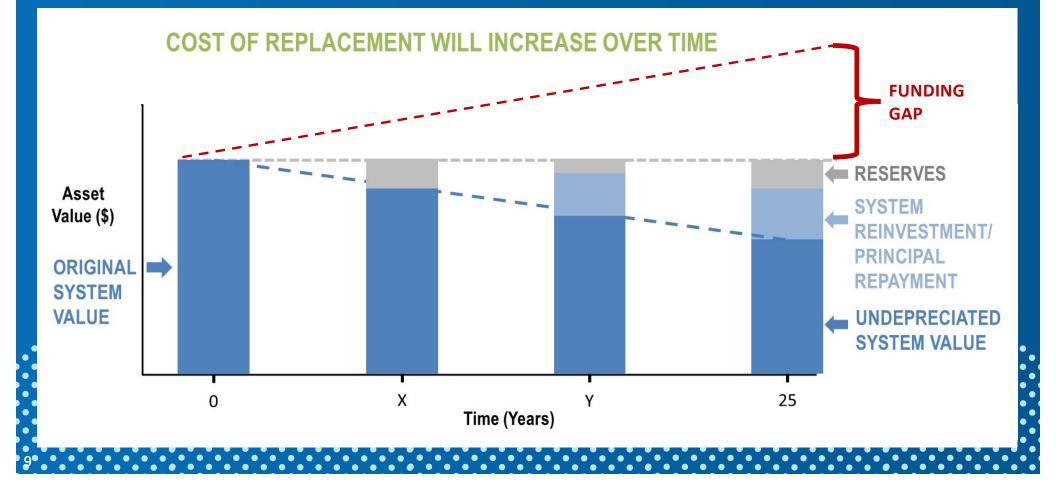
### **OTHER CHALLENGES**

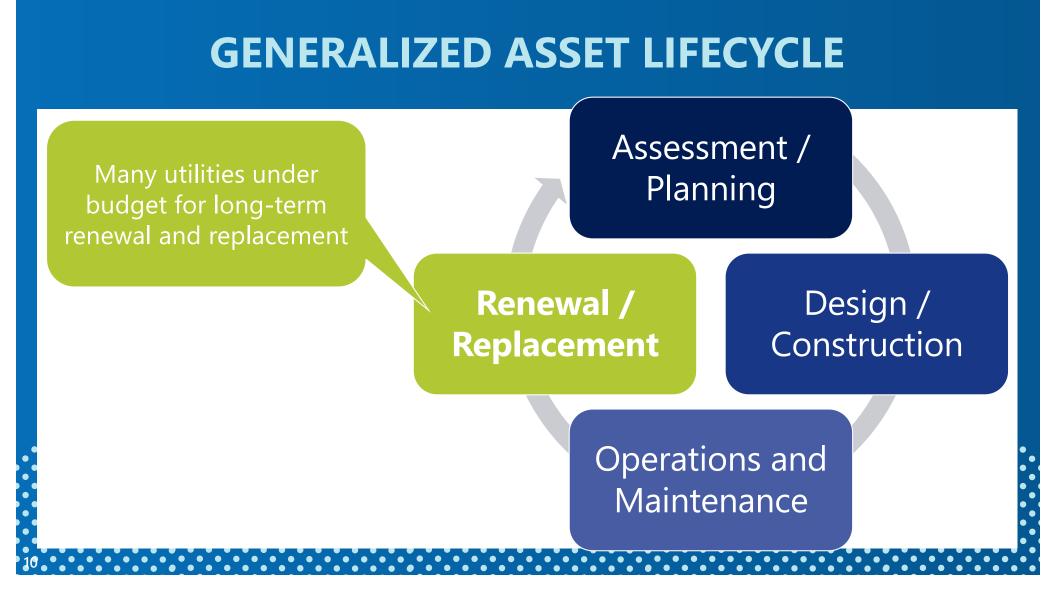


## **PROMOTING SUSTAINABILITY**



Understanding and Maintaining Value


**Renewal Planning: Defining Sustainability** 


Funding Infrastructure Renewal: Sustainability in Practice

# Asset Value and The Cost of Waiting



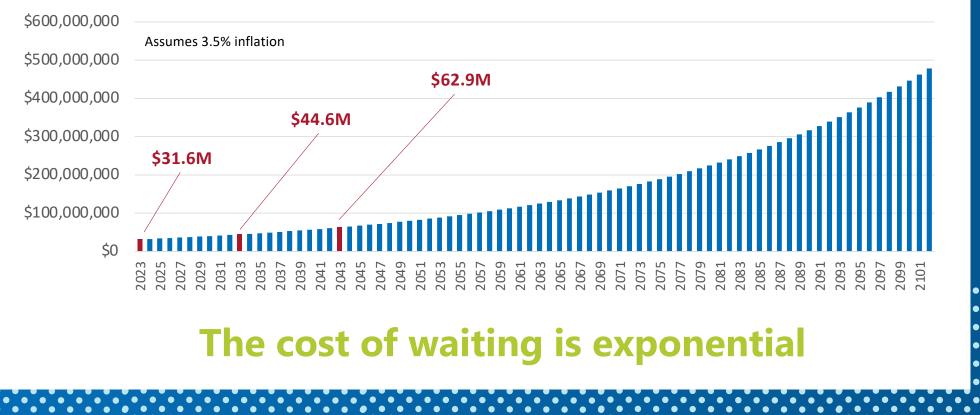
## **SYSTEM VALUE**





### THE COST OF WAITING Case Study

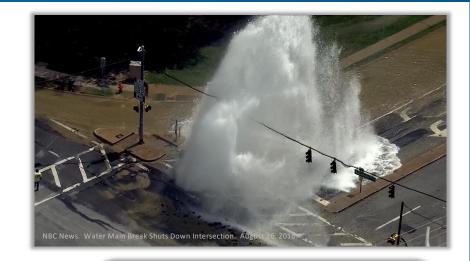
| System                                                            | Infrastructure<br>Miles | Life Cycle | Miles / Year     |  |  |
|-------------------------------------------------------------------|-------------------------|------------|------------------|--|--|
| Water Main                                                        | 352                     | 80 Years   | 4.4 miles / year |  |  |
| Sanitary Sewer                                                    | 275                     | 80 Years   | 3.4 miles / year |  |  |
| Storm Sewer                                                       | 237                     | 80 Years   | 3.0 miles / year |  |  |
| Roads                                                             | 296                     | 80 Years   | 3.7 miles / year |  |  |
| Miles per year based on infrastructure $\approx$ 4.0 miles / year |                         |            |                  |  |  |


#### What is the cost of waiting?

### THE COST OF WAITING Case Study

- 2018 Total Municipal Reconstruction Project Example
  - 1,900 Feet
  - \$2,500,000 (2018\$)
  - \$7,900,000 per mile (2023\$)
- 2023 Hypothetical Reconstruction Project Costs
  - 4.0 miles = \$31,600,000 (2023\$)
  - Costs are going to keep increasing...

### THE COST OF WAITING Case Study


#### What Does 80-Years Look Like?



# What is Renewal Planning and Why It's Important

### WHAT IS RENEWAL PLANNING?

Making the appropriate investments in existing infrastructure systems to provide a reliable, sustainable, and consistent level of service to customers.



Investments can be made directly into improving infrastructure or reserves for use in the future.

## WHY IT'S IMPORTANT

Ensuring public safety

Continue to provide consistent level of service

Minimize surprises

Build confidence – know when and how to fund infrastructure

Predictable rate adjustments

Justify reserves and cash on hand





## **RENEWAL PLANNING Recommendations for Getting Started**



GIS and other tools can help throughout the renewal planning process

- 1. Develop a robust infrastructure inventory; the more data the better
- Analyze your infrastructure; determinestrategies and priorities for improving
- 3. Align your renewal plan (and other capital improvement plans) with a financial model
- 4. Advocate for policies that include funding infrastructure renewal and/or reserves

## **SOME QUESTIONS TO CONSIDER**

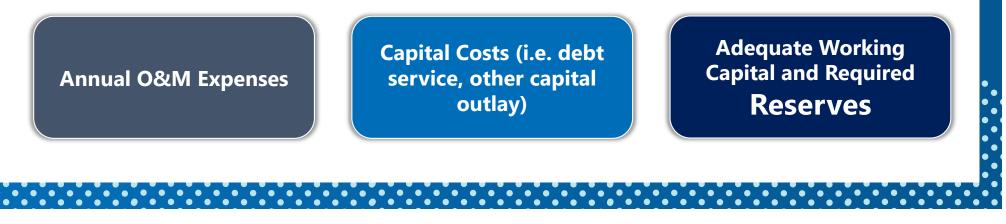
- What do we own? What is it worth? What is the condition?
- What has been depreciated in the system? What infrastructure is at or nearing the end of its useful life?
- What do we currently have in reserves?
- How will projects be paid for the in the future? (cash vs debt)
- What is value of system "consumed" annually?
- How much capital is funded annually through rate revenues?
- What does affordability mean to my users?



# Funding Infrastructure Renewal Efforts



## WHERE TO START?


#### Full Cost Recovery

- When was the last time we evaluated our rates?
- Are our rates covering the full cost of service?
- Policy Discussion
  - Do we have financial policies in place?
- Education
  - What is our strategy for educating stakeholders?
  - What is our strategy for educating customers?

## **FULL COST RECOVERY**

**Full Cost Recovery (or Pricing)** - charging rates and fees that reflect the <u>full cost of providing water and/or wastewater services;</u> this includes <u>renewal and replacement costs for treatment</u>, storage, distribution, and collection systems.


#### **Full Cost Recovery should include:**



#### **FULL COST RECOVERY (Continued)**

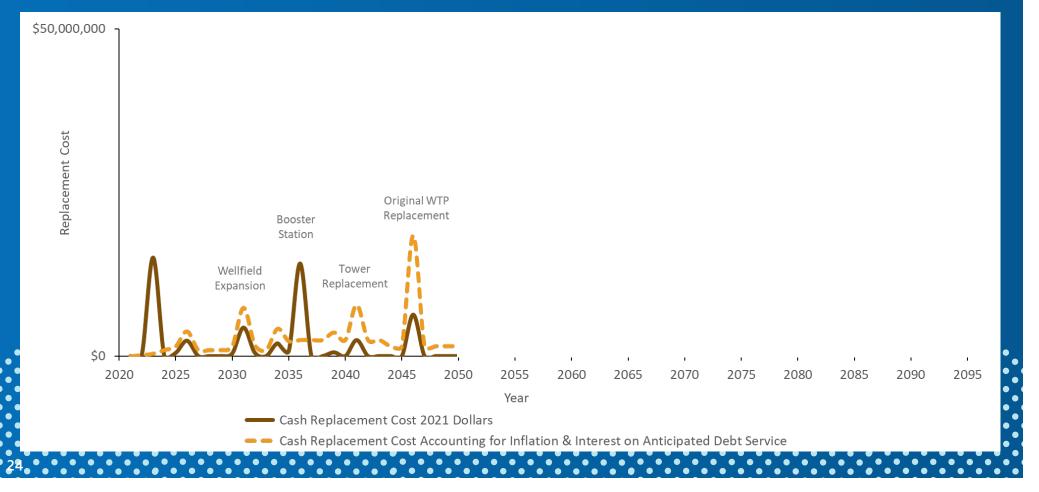
Some utilities have previously kept their rates low by minimizing or ignoring renewal and replacement costs.

But as the useful lives of our infrastructure systems come to an end, managers and the communities they serve are forced to address these costs, sometimes **through painful and unexpected rate increases**.

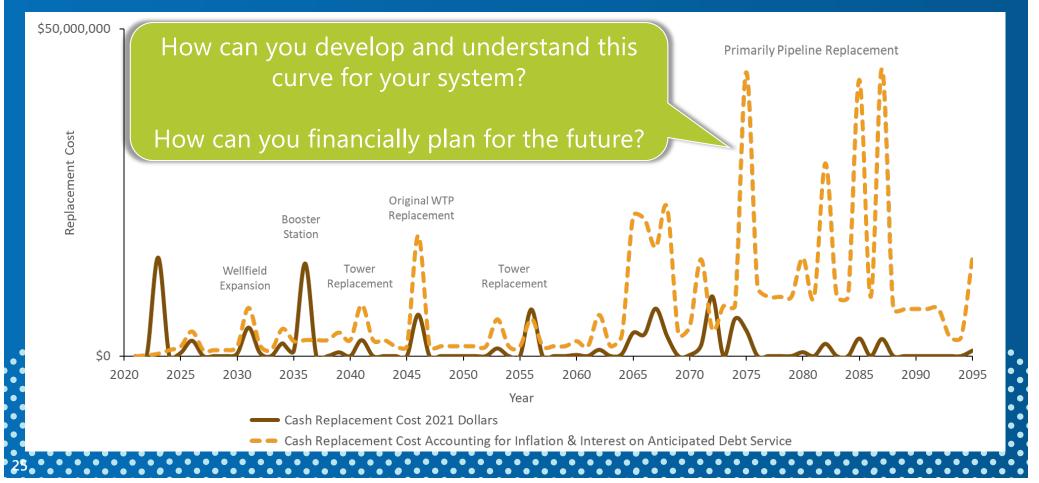


## EXAMPLE: SIMPLE CAPITAL PLAN-BASED APPROACH

- Capital Reserve Placeholder
  - Minimum recommended annual reinvestment = Annual Depreciation

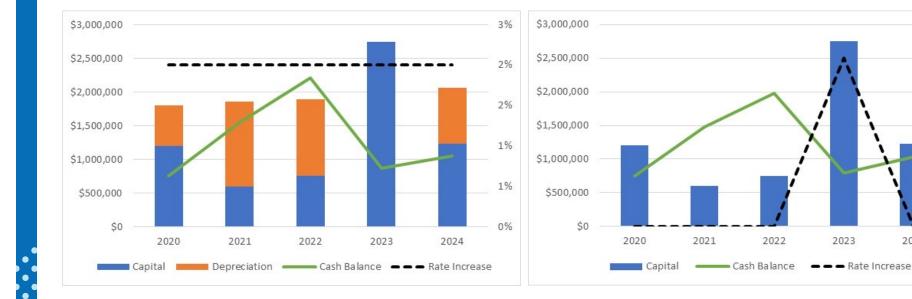

| Potential Capital<br>Items*     | 2024     | 2025     | 2026                | 2027      |                                                   | Projected<br>2024 |
|---------------------------------|----------|----------|---------------------|-----------|---------------------------------------------------|-------------------|
| Generators for Pump<br>Stations | \$40,000 | \$40,000 | \$40,000            | \$40,000  | Annual Depreciation                               | \$793,083         |
| Rural Water Mtce                |          |          | \$200,000 \$200,000 |           | Less 2024 Debt Principal                          | (\$604,740)       |
| Bldg                            |          |          |                     |           | Less Average Rate-Funded Capital                  | (\$140,000)       |
| Total                           | \$40,000 | \$40,000 | \$240,000           | \$240,000 | <b>Calculated Contribution to Capital Reserve</b> | \$48,343          |
| Annual Average = \$140,000      |          |          |                     |           | 1 - /                                             |                   |

- Capital-Related Revenue Requirements
  - \$604,740 Debt Service Principal


\*Note: Recommended Capital Placeholder Value is based on Depreciation, and would not change in the absence of any potential Capital Improvement items

• \$188,343 Capital Investment or Contribution to Capital Reserves

#### BEING PROACTIVE | FORWARD LOOKING Case Study




### BEING PROACTIVE | FORWARD LOOKING Case Study



## **PROACTIVE CAPITAL PLANNING YIELDS SMOOTHER RATE MANAGEMENT**

Not This:



**Strive for This:** 

• . ۲

12%

10%

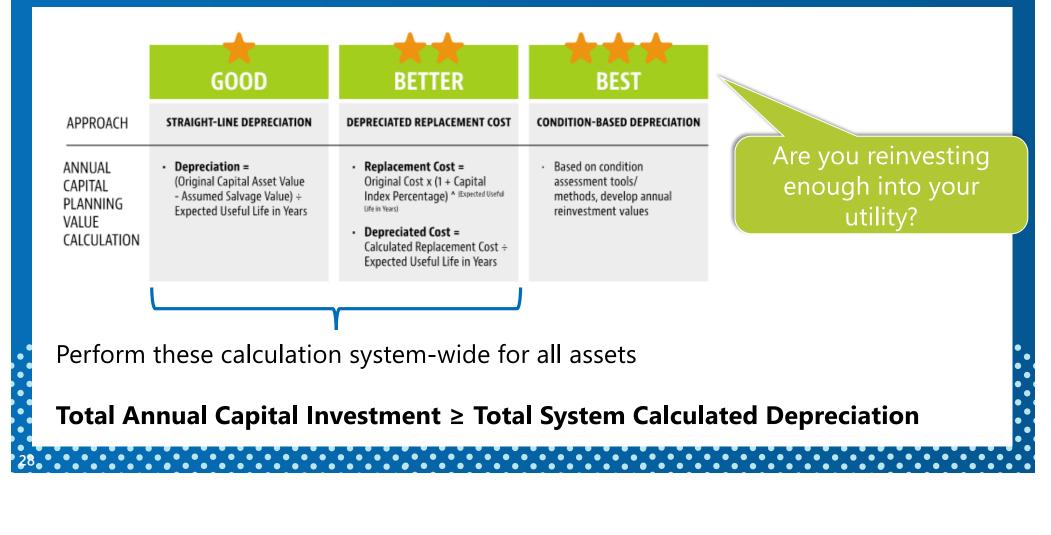
8%

6%

4%

2%

0%


2024

## RESERVES

#### What Reserves are Recommended? What are the Targets?

| Reserve Fund       | Description/Purpose                                                                                                                                                                                               | Recommended Target Guidelines                                                                                                                                                                                                                                                                                                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating          | Cash available to ensure the utility can meet on-going O&M expenses despite seasonal revenue fluctuations                                                                                                         | Minimum one-eighth of annual operating and maintenance expense (45 days); 45-120 days, sometimes up to one year of O&M                                                                                                                                                                                                               |
| Debt Service       | Restricted account required by bond/loan covenant,<br>held for the life of the loan and used for final debt<br>retirement                                                                                         | As specified in bond/loan documents, typically equal to the highest annual payment within repayment period                                                                                                                                                                                                                           |
| Capital            | Cash set aside for capital renewal/replacement, or<br>future system expansion, based on desired approach<br>to capital funding                                                                                    | <ul> <li>A strategic target is normally set based on specific capital funding goals of the system, i.e.:</li> <li>One year of depreciation</li> <li>Five-year average of rate-funded capital investment</li> <li>Percentage of the annual capital improvements plan</li> <li>Asset-based annual reinvestment calculations</li> </ul> |
| Emergency          | A reserve fund specifically established to offset<br>revenue needed in the event of unplanned<br>expenditures or events, such as a drought                                                                        | Approaches vary; sometimes based on the cost of replacement of the most critical and expensive infrastructure, or designed to replace a critical revenue loss, such as in a drought situation                                                                                                                                        |
| Rate Stabilization | Similar to an emergency reserve designed to avoid rate<br>spikes and minimize necessary rate adjustments when<br>expenses are higher than anticipated and/or revenues<br>are less than anticipated for any reason | A target is not always specified, sometimes set as the amount of revenue associated with a certain percent rate increase                                                                                                                                                                                                             |

## **CAPITAL RESERVE APPROACHES**



## **CAPITAL RESERVE APPROACHES**

| GOOD                                                                                                                                                                   | BETTER                                                                                                                                                                                                                             | BEST                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| STRAIGHT-LINE DEPRECIATION                                                                                                                                             | DEPRECIATED REPLACEMENT COST                                                                                                                                                                                                       | CONDITION-BASED DEPRECIATION                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>Depreciation =         <ul> <li>(Original Capital Asset Value</li> <li>Assumed Salvage Value) ÷</li> <li>Expected Useful Life in Years</li> </ul> </li> </ul> | <ul> <li>Replacement Cost =<br/>Original Cost x (1 + Capital<br/>Index Percentage) * (Expected Useful<br/>Ufe in Years)</li> <li>Depreciated Cost =<br/>Calculated Replacement Cost ÷<br/>Expected Useful Life in Years</li> </ul> | <ul> <li>Based on condition<br/>assessment tools/<br/>methods, develop annual<br/>reinvestment values</li> </ul>                                                                                                                                                                                                                                                         | Are you reinvesting<br>enough into your<br>utility?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                        | STRAIGHT-LINE DEPRECIATION     Depreciation =     (Original Capital Asset Value     - Assumed Salvage Value) ÷                                                                                                                     | STRAIGHT-LINE DEPRECIATION       DEPRECIATED REPLACEMENT COST         • Depreciation =<br>(Original Capital Asset Value<br>- Assumed Salvage Value) ÷<br>Expected Useful Life in Years       • Replacement Cost =<br>Original Cost x (1 + Capital<br>Index Percentage) * (Expected Useful<br>Ufe in Years)         • Depreciated Cost =<br>Calculated Replacement Cost ÷ | STRAIGHT-LINE DEPRECIATION       DEPRECIATED REPLACEMENT COST       CONDITION-BASED DEPRECIATION         • Depreciation =<br>(Original Capital Asset Value<br>- Assumed Salvage Value) ÷<br>Expected Useful Life in Years       • Replacement Cost =<br>Original Cost x (1 + Capital<br>Index Percentage) * (Expected Useful<br>Ute in Years)       • Based on condition<br>assessment tools/<br>methods, develop annual<br>reinvestment values         • Depreciated Cost =<br>Calculated Replacement Cost ÷       • Depreciated Cost = |  |

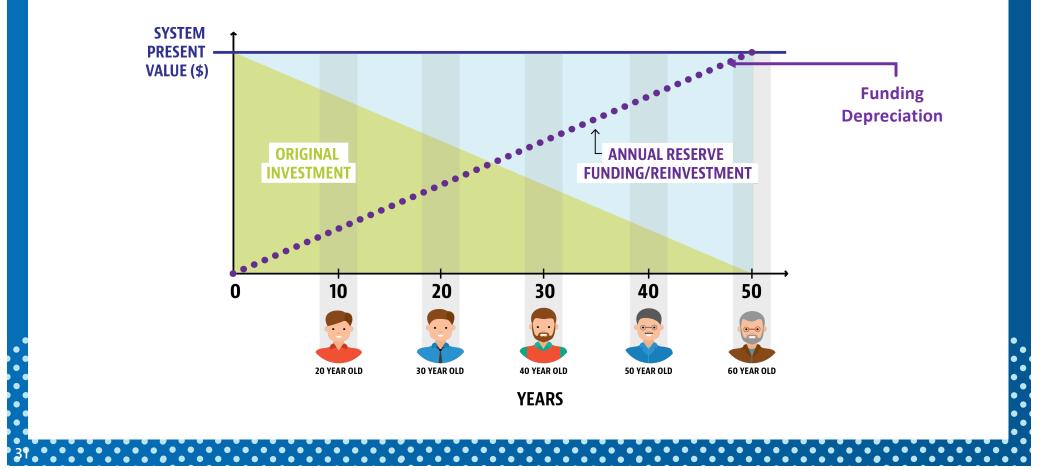
Perform condition analysis to determine estimate life and renewal/replacement strategies and directly incorporate into utility capital improvement plans and budgets

## **CAPITAL RESERVE APPROACHES - EXAMPLES**

#### **Pump Station (Simplified Example):**

- \$10M to construct in 2000
- 30-Year Estimated Life
- 3% Historical Inflation

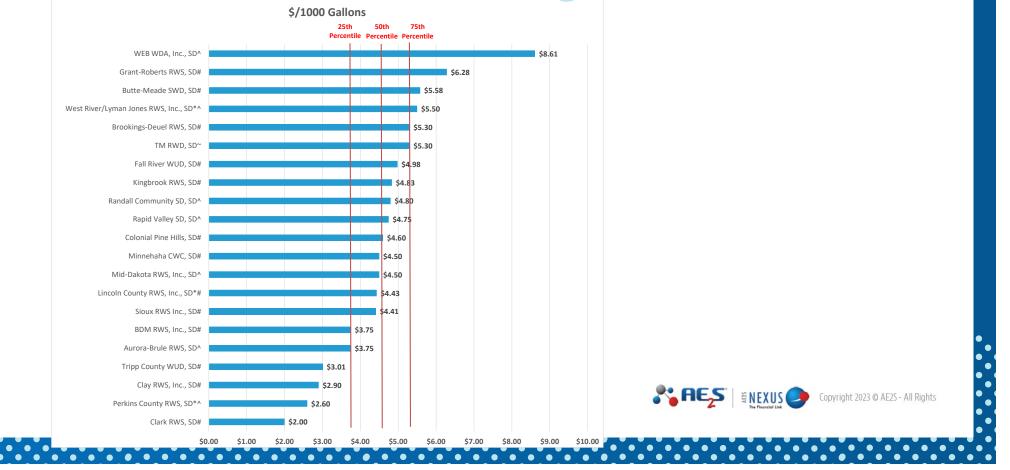
Good: \$10M / 30-Years = \$334K Annual Reinvestment


**Better:** \$10M x (1.03)<sup>30 =</sup> \$24.3M to replace it in 2030

\$24.3M / 30-Years = **\$810K Annual Reinvestment** 

**Best:** Perform condition analysis and develop specific rehab plan and budget for it (reinvestment value could be between the other two approaches)

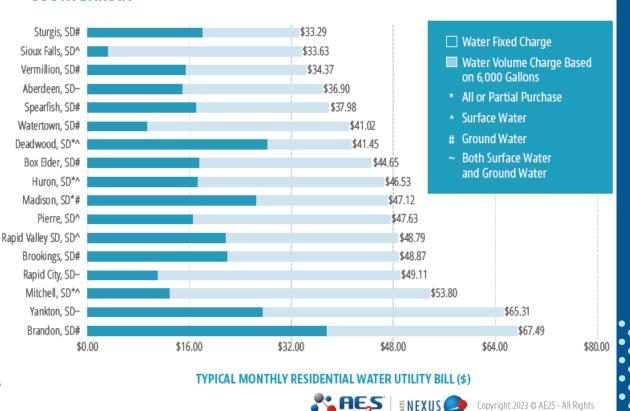
Financial based models can be performed utility-wide and provide guidance for total utility reinvestment amounts


## **GENERATIONAL EQUITY**



## EDUCATION AND COMMUNICATION: Benchmarking Tools




## EDUCATION AND COMMUNICATION: Benchmarking Tools



## EDUCATION AND COMMUNICATION: Financial Management/Policy Discussions

SOUTH DAKOTA

- Self-supporting utilities
- Revenue stability
- Physical sustainability
- Economic development
- Funding agency requirements
- Access to capital
- Fair and equitable charges
- Affordability
- Financial sustainability/health
- Approaches to rate structuring
- Approaches to funding reserves



# WRAP UP



## PLANNING FOR THE FUTURE IS A TRUE BALANCING ACT

**Cash Reserves Revenue Stability Rate Equitability** Affordability **Renewal & Rehabilitation Capital Financing** Inflation **Level of Service Customer Expectations Full Cost Recovery** 

## **TAKEAWAYS**

- Multiple reports and studies warn us of the burdens of delaying investments in renewing our infrastructure
- Costs will continue to increase, and the cost of waiting is exponential
- Ensure your rates are covering the full cost of providing service, but continue to leverage grant and low interest loan funding opportunities
- Funding infrastructure renewal on a recurring basis directly or via investments in reserve funds is strongly recommended

Position your System for success by getting started with an infrastructure renewal plan

## **REMEMBER WHY IS THIS IMPORTANT**

- Maintain value and reliability of system
- Continue to provide consistent level of service
- Build confidence:
  - What infrastructure to fund
  - When to fund it
  - How to fund it
- Support predictable rate adjustments
- Justify cash on hand

## FINANCIAL PLANNING "ACTION ITEMS"

- Policy Discussion Reserves
- Policy Discussion Capital Planning Approach
- Policy Discussion Financial Planning/Rate-Setting Approach What is most important to you?
- Revisit Capital Planning Annually
- Practice Financial Planning **On-Going**

- (1 being most important)
  - Confidence in when significant reinvestments will be required and how they will be funded.
  - Modest rate adjustments.
  - Provide a consistent level of service to customers.
  - Justify cash on hand.

# THANK YOU to the SDARWS! Questions?

#### Miranda Kleven, PE (ND) Miranda.Kleven@ae2s.com

#### 

#### Participate in the 2024 AE2S Annual Utility Rate Survey!

Data collection will run February 1 through March 22, 2024





Advanced Engineering and Environmental Services, LLC

