Optimized Corrosion Control Treatment 2024 SDARWS Annual Technical Conference

Pierre, SD

January 9, 2024

Delvin DeBoer, Ph.D., P.E.

Discussion Topics

- Corrosion Fundamentals
- Corrosion Control Treatment Options
- South Dakota Experience
- EPA view of Optimized Corrosion Control
- Future Opportunities

CORROSION

- Corrosion "battery" consists of an anode, cathode, and return current path
- Metal is oxidized at the anode

WHAT MAKES WATER CORROSIVE / STABLE?

WATER QUALITY FACTORS THAT INFLUENCE CORROSIVITY

Dissolved oxygen (or other oxidants)	 Enhances corrosion
pH - metals more soluble at lower pH	 Increased corrosion
TDS - higher TDS, the better electrolyte	 Promotes corrosion
Тетр	 Inc. Temp. generally increase corrosion rate
Chloride to sulfate ratio	 High values increase corrosion
Presence of an inhibitor	Can minimize corrosion
Change in oxidation potential (switching from free chlorine to chloramine)	
	Dissolved oxygen (or other oxidants) pH - metals more soluble at lower pH TDS - higher TDS, the better electrolyte Temp Chloride to sulfate ratio Presence of an inhibitor Change in oxidation potential (switching from free chlorine to chloramine)

CORROSION

- Deposit of corrosion products (called passivating deposits) at the anode may inhibit further corrosion
- Some deposits are very poor inhibitors
- Pipe "scale" can help inhibit corrosion

Lead Pipe Scales

- Depends on water chemistry
- Carbonate compounds (PbCO₃)
- Lead oxides (PbO₂ in highly oxidative conditions)
- Lead orthophosphates (Pb₃(PO₄)₂ when orthophosphate is used as an inhibitor)

PHOSPHATE COMPLEX COMPOUNDS

Sodium Hexametaphosphate

Polyphosphate

- Forms complexes with metal ions undersaturate the system
- Poisons growth of crystals threshold effect

SWITCHING FROM FREE CHLORINE TO MONOCHLORAMINE

 Stable lead species may change to more soluble species, and dissolve the lead oxide (PbO₂) scale

CHLORIDE/SULFATE MASS RATIO

- Greatest impact on lead solder and partially replaced lead pipe (galvanic connection)
- Sulfate forms PbSO₄ solids reduces galvanic current and forms protective layer
- Chloride forms soluble PbCl⁻ complexes – increases galvanic current and prevents protective layer

MANAGING CORROSIVITY/STABILITY?

- Protective coatings and linings
- Use corrosion resistant materials
- Cathodic protection (makes the metal a cathode)

Treatment to inhibit corrosion by making the metal less soluble or laying down an inhibiting scale

CORROSION CONTROL TREATMENT

Adjust pH (decrease solubility of Pb/Cu)

• Lime, soda ash, sodium hydroxide, adjust pH in recarbonation step of lime softening

Add an inhibitor (create an inhibiting layer)

- Orthophosphate (ortho is the best for Pb/Cu)
- Ortho/poly blend
- Silicate

pH and DIC AFFECT LEAD SOLUBILITY

 When DIC is less than 30 mg/ C/L, increasing pH generally decreases lead solubility

pH ADJUSTMENT – IMPACTS ON CALCIUM

- Calcium is precipitated as CaCO₃ $CaCO_{3} \downarrow \leftrightarrow Ca^{2+} + CO_{3}^{2-}$ $K_{sp} = (Ca^{2+})(CO_{3}^{2-})$
- Natural alkalinity forms, HCO₃⁻, CO₃²⁻
- Form present in water depends on pH $HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$
- Increasing pH creates carbonate, which in turn, precipitates calcium carbonate

WATER STABILIZATION SCHEMATIC

RECARBONATION

- Purposes
 - Reduce the pH
 - Control water **<u>stability</u>** with respect to CaCO₃
- pH is based on proper balance between HCO_3^- and CO_3^{2-} $CO_2 + CaCO_3 + H_2O \rightarrow Ca(HCO_3)_2$

CORROSION CONTROL WITH ORTHOPHOSPHATE

Chemicals

PO₄ decreases Pb Solubility

- As dose increases, reach a point of diminishing returns
- More effective (lower dosages needed) with lower total inorganic C
- pH has less effect at lower total inorganic C

TYPICAL PRACTICE FOR ORTHO IN SD

Vendor guided

- Water pH 7-8
- Liquid chemical feed system
- Dosage ranges from 0.5 to 3 mg/L

pH Adjustment In SD

Parameter	Range	Average
Ca Hardness,	52-325	133
mg/L as CaCO3		
Alkalinity,	18-97	53
mg/L as CaCO3		
рН	7.7-9.45	8.54
90%ile Pb, ppb	0.27-10.7	2.36
90%ile Cu, ppm	0.02-0.52	0.09
	ParameterCa Hardness, mg/L as CaCO3Alkalinity, mg/L as CaCO3pH90%ile Pb, ppb90%ile Cu, ppm	ParameterRangeCa Hardness, mg/L as CaCO352-325Alkalinity, mg/L as CaCO318-97pH7.7-9.4590%ile Pb, ppb0.27-10.790%ile Cu, ppm0.02-0.52

Lime Softening Systems In SD

 Data from 17 Lime Softening Systems 	Parameter	Range	Average
	Ca Hardness, mg/L as CaCO3	52-325	133
	Alkalinity, mg/L as CaCO3	18-97	53
	рН	7.7-9.45	8.54
	90%ile Pb, ppb	0.27-10.7	2.36
	90%ile Cu, ppm	0.02-0.52	0.09

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

.

• •

Orthophosphate Treatment in SD

8 systems	Parameter	Range	Average
 2 lead, 6 copper 	Ca Hardness, mg/L as CaCO3	111-605	284
 1 system exceeding Cu Action Level 	Alkalinity, mg/L as CaCO3	149-367	279
	рН	7.28-7.84	7.5
	Langlier Index	-0.5-1.0	0.35
	90%ile Pb, ppb	1.0-3.9	1.7
	90%ile Cu, ppb	0.04-1.5	0.62

Blended Phosphate Treatment in SD

11 systems	Parameter	Range	Average
• 3 lead, 8 copper	Ca Hardness, mg/L as CaCO3	74-428	157
 7 systems are purchasing water from RWS 	Alkalinity, mg/L as CaCO3	34-343	175
	рН	7.15-8.75	7.9
 All 1 systems meeting Current Action Levels 	Langlier Index	-0.35-1.73	0.3
	90%ile Pb, ppb	0.5-9.1	3.0
	90%ile Cu, ppb	0.02-1.01	0.43

What is Optimized Corrosion Control?

- Basis for regulation
 - Action level addresses health concern, but not an MCL
 - What Action Level is possible with corrosion control treatment??
 - LCR 15 ppb Lead, 1.3 ppm Copper
 - LCRI 10 ppb Lead, 1.3 ppm Copper
- EPA says 10 ppb is supported by past corrosion control treatment performance data as being generally representative of optimized corrosion control treatment (that most systems that have installed OCCT can meet).

Sampling Protocol

- LCR
 - 1st Draw, 1 Liter
- LCRR and LCRI
 - 1st Draw at all sample sites
 - 5th Liter at lead service line sample sites

PROFILE SAMPLING – Dissolved Lead

PROFILE SAMPLING – Particulate Lead

LEAD RELEASE

Hydraulic Release

- Shorter term
- Off-color water customer noticed
- Short duration
- Flush to remediate
- Particulate metal dominant

- Chemical Release
 - -Longer term
 - Changes in water chemistry
 - Elevated concentrations of dissolved metal
 - Caught in interval sample at volume equivalent to the lead source

LCRI – Lead Action Level

Lowering the Lead Action Level. EPA is proposing to lower the lead action level from 15 μ g/L to 10 μ g/L. When a water system's lead sampling exceeds the action level, the system would be required to inform the public and take action to reduce lead exposure while concurrently working to replace all lead pipes. For example, the system would install or adjust corrosion control treatment to reduce lead that leaches into drinking water.

Actions – Individual tap sample exceeding 10 ppb

EPA is proposing to maintain the 2021 LCRR requirement for systems to conduct additional activities when a tap sample exceeds 10 ppb. Systems would conduct the distribution system and site assessment for any sampling site that exceeds 10 ppb. The distribution system and site assessment would involve collecting a water quality sample in the distribution system near the site, collecting a follow-up lead tap sample, and evaluating the results to determine if either a localized or centralized adjustment of the OCCT or other distribution system actions are necessary and submit a recommendation to the State.

South Dakota Impacts

- Current data indicates that 16 systems exceed the 10 ppb action level for lead
 - Likely the number will change with proposed 5th liter sampling protocol
- Courses of action
 - Remove lead service line
 - Optimize treatment

Thank you! Questions?

Delvin DeBoer, Ph.D., P.E. delvin.deboer@ae2s.com 605-430-7082

Advanced Engineering and Environmental Services, LLC